Study of error compensation method for magnetic heading measurement system 磁航向测量系统误差修正方法研究
Axis - misalignment error compensation method based on optical alignment for a multi - sensor assembly 基于光对准的多传感器轴装配误差补偿技术
Technology for enhancing the grinding accuracy of precision cam by geometric error compensation method 提高精密凸轮磨削精度的几何误差补偿技术
Finally , system ’ s measurement error and error compensation method are analyzed , and some measures of anti - interference are taken to improve system ’ s reliability . the project was finished by combination the theory and the practice , and a new way on peterson coil automatic compensation is available 本课题将理论运用和实践相结合,为中性点经消弧线圈接地系统的自动调谐提供了一种新的技术手段,具有广阔的应用前景。
In chapter 2 , author points out firstly that the elastic deformation of elastic units of a robot ' s wrist force sensor will be enlarged by the end - effector , the instruments and the work pieces , so the elastic deformation of the sensor will influence the location accuracy or kinetic accuracy of end point of a robot , under the condition of that the robot technology facing the developing of heavy load , light mass and high accuracy . it is discussed respectively that the relationship between the differential kinemics in the sensor ' s coordinate and the location accuracy or kinetic accuracy of the end point . error matrixes of location and kinemics of the end point are presented respectively based on the differential kinemics in the sensor ' s coordinate , and the on - line error compensation methods are introduced subsequently 第二章首先指出机器人腕力传感器弹性体的弹性变形经过机器人末端连杆、工具、工件等的放大后,会对机器人末端精确定位和运动产生的影响;然后分别研究了传感器坐标系内的微分运动与机器人末端工件精确定位、运动的关系;在此基础上,研究了基于腕力传感器弹性体微分运动的机器人末端定位、运动误差的误差矩阵及其在线误差补偿方法;基于机器人动力学的机器人末端定位、运动误差的误差矩阵及其在线误差补偿方法;最后,以puma型机器人为对象,给出了基于腕力传感器内微分运动的机器人末端定位、运动误差及其在线补偿方法的仿真实例:给出了基于机器人动力学的机器人末端定位、运动误差及其在线补偿方法的仿真实例;仿真结果表明, 1 )基于腕力传感器的机器人末端定位误差在腕力传感器允许的载荷下可达十分之几毫米级。
Mbss system is a complex system with different kinds of sensors . the author analyzed the main sources of error of the system , studied the synthetic error compensation method for sonar array . besides , methods for pre - processing of on - ship data and combined processing of time and space for depths were also studied , which could remove extremes and enhance the quality of digitized final come out efficiently 多波束测深系统是一个多传感器组合的复杂系统,本文分析了系统主要误差的来源,论证了声纳基阵误差综合修正方法,并提出了测量数据的预处理方法和测深数据的时间与空间联合处理方法,可以有效剔除野值,提高数字成果图的成图质量。
And then , the error matrixes of location and kinemics of the end point , and the on - line error compensation method are given based on robot ' s dynamics . finally based on puma robot , three simulation examples are given respectively ; the first is about the location error and on - line location error compensation , the second is about the kinetic error and on - line kinetic error compensation , the third is about location and kinetic errors causing by robot ' s dynamics and the on - line error compensations . the simulation results show that : a ) location error of the end point based on elastic deformation of the sensor will be about millimeter ' s degree under the permitting load , b ) the on - line error compensation methods given are available 第三章首先概括了目前机器人连杆惯性参数识别的四种方法,总结这些方法的优、缺点;指出这些方法存在的问题是:或者需将机器人解体,不能在线进行参数识别,或者不能给出机器人连杆独立的惯性参数值,只能获得惯性参数的组合值,而这些方法的共同问题是:不能考虑机器人连杆的关节特性;本章提出了一种基于腕力传感器的机器人末端连杆惯性参数在线识别方法,给出了该方法的理论计算和推导;研究提出了以腕力传感器输出为前提的、基于newton - euler动力学的机器人动力学正向、逆向递推公式;针对机器人负载参数辨识必须在线、实时的特点提出了基于腕力传感器的负载参数在线识别方法,给出了负载参数识别的步骤。